
Distributions of Tropical Precipitation Cluster Power and Their Changes under
Global Warming. Part II: Long-Term Time Dependence in Coupled Model

Intercomparison Project Phase 5 Models

KEVIN M. QUINN AND J. DAVID NEELIN

Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

(Manuscript received 28 September 2016, in final form 30 June 2017)

ABSTRACT

Distributions of precipitation cluster power (latent heat release rate integrated over contiguous pre-

cipitating pixels) are examined in 18–28-resolution members of phase 5 of the Coupled Model In-

tercomparison Project (CMIP5) climate model ensemble. These approximately reproduce the power-law

range and large event cutoff seen in observations and the High Resolution Atmospheric Model (HiRAM) at

0.258–0.58 in Part I. Under the representative concentration pathway 8.5 (RCP8.5) global warming scenario,

the change in the probability of the most intense storm clusters appears in all models and is consistent with

HiRAMoutput, increasing by up to an order of magnitude relative to historical climate. For the three models

in the ensemble with continuous time series of high-resolution output, there is substantial variability on when

these probability increases for the most powerful storm clusters become detectable, ranging from detectable

within the observational period to statistically significant trends emerging only after 2050.A similar analysis of

National Centers for Environmental Prediction (NCEP)–U.S. Department of Energy (DOE) AMIP-II re-

analysis and Special Sensor Microwave Imager and Imager/Sounder (SSM/I and SSMIS) rain-rate retrievals

in the recent observational record does not yield reliable evidence of trends in high power cluster probabilities

at this time. However, the results suggest that maintaining a consistent set of overlapping satellite in-

strumentation with improvements to SSM/I–SSMIS rain-rate retrieval intercalibrations would be useful for

detecting trends in this important tail behavior within the next couple of decades.

1. Introduction

Characterizing the current state of organized tropical

convection and projected changes under global warming

is important because of the potentially large socioeco-

nomic impacts associated with such changes. A survey of

studies examining phases 3 and 5 of the CoupledModel

Intercomparison Project (CMIP3 and CMIP5) coupled

climate models shows a projected increase in extreme

precipitation event frequency and intensity by the end

of the twenty-first century (e.g., Tebaldi et al. 2006;

Kharin et al. 2007, 2013; Sillmann et al. 2013), although

uncertainties emerge in both observational (e.g.,

Easterling et al. 2000; Alexander et al. 2006; Kharin et al.

2007, 2013; Lenderink and Van Meijgaard 2008; Allan

et al. 2010) and global-scale modeling research (e.g.,

Tebaldi et al. 2006; Kharin et al. 2007, 2013; Allan and

Soden 2008; Allan et al. 2010; Sillmann et al. 2013) in

recent and future climate. One potential source of un-

certainty in extreme precipitation projections is an in-

adequate representation of important physical processes

associated with convection in climate models (e.g.,

Kharin et al. 2007) including convective organization

(e.g., Tan et al. 2015). With the advent of high spatial

and temporal spaceborne passive microwave imagers,

much has been learned about convective organization

based on satellite retrieved precipitation products (e.g.,

Huffman et al. 2007; Allan and Soden 2008; Allan et al.

2010), although such platforms are not without limita-

tions (e.g., McCollum and Ferraro 2003; Hilburn and

Wentz 2008; Bowman et al. 2009; Allan et al. 2010; Chen

et al. 2013). There is thus a need for studies that examine
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measures of convective organization in observations, in

comparison to models and in terms of their potential

changes under global warming.

In Quinn and Neelin (2017, hereafter Part I), we build

an observational baseline of tropical precipitation in-

tegrated over contiguous clusters using high-resolution

satellite data with complete spatial coverage. This is

motivated by previous observational studies of cluster

behavior in various space or timemeasures (Mapes et al.

2009; Peters et al. 2009, 2010, 2012; Wood and Field

2011; Skok et al. 2013) and by theory and modeling,

suggesting time-domain cluster measures can be useful

for understanding behavior under global warming

(Neelin et al. 2017). The integrated precipitation over a

cluster can equivalently be expressed as an integrated

latent heat release or cluster power. The probability

distribution of cluster power is shown to follow a long,

scale-free power law, with a distinct cutoff (i.e., a more

rapid drop in probability at high power). We then

show that the High Resolution Atmospheric Model

(HiRAM) with prescribed sea surface temperatures

(SST) at two resolutions accurately simulates these ob-

served cluster power statistics. We also examine

HiRAM output from mid- and end-of-century simula-

tions, finding large increases in the frequency of themost

powerful clusters under a ‘‘business as usual’’ global

warming scenario. These increases exceed those ex-

pected under simple Clausius–Clapeyron scaling of

precipitation.

Here, we compare Special Sensor Microwave Imager

(SSM/I) and Special SensorMicrowave Imager/Sounder

(SSMIS) cluster power distributions with Tropical

Rainfall Measuring Mission (TRMM) 3B42 data, to

ensure consistency across satellite rain-rate retrievals.

We then examine cluster power distributions over the

SSM/I–SSMIS observational record to check for

changes in the frequency of the most powerful storm

clusters in recent climate. Trends uncovered in the

analysis of the satellite data record are next compared to

an analysis of cluster power distributions from the Na-

tional Centers for Environmental Prediction (NCEP)–

U.S. Department of Energy (DOE) AMIP-II reanalysis

(NCEP Reanalysis 2) observationally constrained

modeled precipitation dataset. We then analyze cluster

power distributions from an ensemble of high-resolution

models from the CMIP5 under the representative con-

centration pathway 8.5 (RCP8.5) global warming sce-

nario. We (i) check if the model ensemble adequately

reproduces cluster power distributions in current cli-

mate in observations and in HiRAM; (ii) verify that

coupled models yield end-of-century changes consistent

with those simulated inHiRAM; and (iii) conduct a time

series analysis of the probabilities of clusters from the

highest power intervals to inform expectations for

detectability.

2. Data and methods

Observational rain-rate data are retrieved from the

SSM/I and SSMIS platforms onboard polar-orbiting

Defense Meteorological Satellite Program (DMSP)

satellites. The SSM/I platform flew onboard the F08,

F10, F11, F13, F14, and F15 DMSP satellites from 1987

to 2009 (Wentz 2013). SSMIS data come from the F16

and F17DMSP satellites, beginning inMay 2004 (Wentz

et al. 2012). Our goal is to use cluster power computed

from the SSM/I–SSMIS time series as a reliable indicator

of recent historical cluster power behavior because the

period for which SSM/I–SSMIS data are available (1987–

present) is longer than the period overwhichTRMM3B42

data (1998–2015) are available, presenting a more com-

plete observational record of tropical precipitation data.

SSM/I–SSMIS rain-rate data are retrieved using the

version 7 (V7) algorithm (mmh21) and are available

twice daily, over oceans, at 0.258 3 0.258 latitude–

longitude resolution (Wentz et al. 2012), and, to re-

main consistent with Part I, we confine our time domain

to 1 May–30 September. Rain rates and other data re-

trieved from these platforms are highly intercalibrated,

with further details noted in Wentz and Spencer (1998),

Wentz et al. (2012), Wentz (2013), and Yan and Weng

(2008). Since SSMIS swath width (NSIDC 2016b) is

300-kmwider than SSM/I swath width (NSIDC 2016a), we

also test SSM/I–SSMIS cluster power distributions for

sensitivity to the swath width difference over the com-

plete SSM/I–SSMIS platform overlap period (2004–09)

by comparing SSM/I, SSMIS, and SSMIS cluster power

distributions that have had their swath width narrowed

to match SSM/I swath width. On average, each SSM/I

swath is 16 pixels narrower than each SSMIS swath over

the tropics between 308S and 308N, so to match SSM/I

and SSMIS swath widths, we run a simple procedure that

masks eight pixels on each side of every SSMIS swath

prior to running our clustering and binning procedures.

We first compare SSMIS cluster power distributions

for 2004–09, examining cluster power sensitivity to the

same minimum rain-rate thresholds used in Part I. Then

we compare the cluster power distribution at the highest

minimum rain-rate threshold used in this study

(0.7mmh21) from the TRMM 3B42 retrieval to SSM/

I–SSMIS distributions at the same threshold retrieved

over 2004–09, assessing storm cluster behavior across

multiple satellite rain-rate retrievals. As noted in Part I,

TRMM 3B42 rain-rate data (here, 2004–09 only) are

merged from sensors onboard the TRMM spacecraft

and other satellites to provide 3-hourly rain-rate
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retrievals (mmh21) at 0.258 3 0.258 latitude–longitude

resolution, over land and ocean (Huffmann et al. 2007;

Huffmann and Blovin 2014; TRMM 2015). TRMM 3B42

rain-rate retrievals from only 0000 and 1200 UTC are

included in this study, in order to optimize the compari-

son with twice-daily SSM/I–SSMIS data.

Next, we evaluate cluster power behavior in recent cli-

mate using an observationally constrained model. Mod-

eled precipitation flux data (kgm22 s21) from the NCEP

Reanalysis 2 dataset present a data record extending back

to 1979 and so are compared against satellite retrievals to

characterize trends in cluster power behavior in the his-

torical period. NCEP Reanalysis 2 data are available ev-

ery 6h (and not every 3h like SSM/I–SSMIS, TRMM

3B42, and CMIP5 datasets employed here) at a horizontal

resolution of approximately 28 latitude 3 28 longitude

(Kanamitsu et al. 2002), although only data from 0000 and

1200 UTC are incorporated here.

Last, we examine if a suite of coupled CMIP5 models

(Table S1 in the supplemental information), chosen for

relatively high spatial (e.g., less than 28) and temporal

(e.g., 3 hourly) resolution, exhibits changes in frequency

and intensity of the most powerful storm clusters in re-

cent, midcentury, and end-of-century climate under

RCP8.5. In Part I we find that the portion of the distri-

bution showing the most change corresponds to the

events likely to have the most impact (i.e., highest

cluster power), so we (i) analyze if the probability of

storm clusters from the highest power intervals increases

in the future, (ii) quantify the magnitude of such

probability changes, and (iii) determine when changes

first become detectable (as a statistically significant

linear trend) compared to climatology. As in Part I,

we only include cluster power data from 0000 and

1200 UTC, follow the same clustering procedure and

cluster power calculation, and confine our analysis to

the tropics (globally from 308N to 308S) from 1 May to

30 September.

To calculate cluster power, we follow a similar con-

tiguous precipitating pixel approach described in Peters

et al. (2012) and Part I, first masking cells not meeting

the 0.7mmh21 minimum rain-rate threshold. Sensitivity

to this threshold was analyzed in Part I. It has little effect

in the observational datasets, but model behavior is

more robust when regions of low rain rate are excluded.

Contiguous precipitating cells with rain rates meeting

this threshold then have their rain rates converted to the

instantaneous latent heat release per grid cell, which are

in turn integrated over a cluster to obtain cluster power,

in units of gigawatts.We convert rain rate into ameasure

of latent heat release as it quantifies the instantaneous

amount of energy released over a storm and directly ties

into Earth’s energy budget.

The binning procedure in building probability density

functions (PDFs) for these distributions follows that of

Part I, with slight modifications, as noted below. As in

Part I, bin width increases smoothly as probabilities

drop, using a bin width that is approximately constant in

log space of cluster power. Recognizing that increments

of cluster size are quantized tomultiples of theminimum

cluster size, one must ensure that the bin spacing is

consistent with this. Bin widths are therefore adjusted to

the integer multiple of the minimum cluster size that is

closest to the chosen asymptotic constant bin width. In

practice, the variations in bin width are small; Table S3

of the supplemental information (SI) shows both bin

width and histogram countsNi prior to normalization by

the width of bin i and the total counts for each analysis

presented. Error bars are given by6Ni
1/2, with the same

normalization as the PDF. The minimum cluster size is

set by the grid size and the minimum precipitation

threshold, so the same bin boundaries apply to historical

and future climate runs of the same dataset. Robustness

to the choice of asymptotic bin width has been exam-

ined, and, for the key case of CMIP5 data changing

under global warming, two versions are presented. The

basic version simply has the asymptotic bin width set and

then the PDF is computed. In a second version that

ensures similar error bars among models in the high

power range of most interest, the number of counts in

the highest power nonzero bin in the historical period is

examined over a small range of asymptotic bin widths,

choosing the value for which the number of counts in the

highest power nonzero bin in the historical period is a

specified target that keeps fractional error at a uniform

modest value that is uniform amongmodels (Table S2 of

the SI). Because probabilities drop steeply near the

highest bin, a very small shift of the bin boundaries is

sufficient to increase cluster counts in the highest bin.

We then apply the same bin boundaries to future climate

runs of the same dataset. In practice, this simple ad-

justment procedure yields improved statistical signifi-

cance for the highest bin for comparison between recent

climate and future climate output. PDFs are shown both

pre- and postadjustment. For each time series, the bin

structure is invariant in time (for the models, including

both historical and RCP8.5).

3. Analysis

a. Cluster power distributions and probability trends
for high power clusters in observations

We evaluate the current state of tropical cluster power

behavior across multiple satellite retrievals (SSM/I,

SSMIS, and TRMM 3B42) and an observationally
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constrained model (NCEP Reanalysis 2) in Fig. 1, in-

vestigating if cluster power PDFs for recent climate

mirror the general behavior described in Part I. In Figs. 2

and 3, we examine the SSMIS retrieval for changes in the

probability of the most powerful storm clusters resulting

from the swath width difference between the SSM/I

and SSMIS platforms. We first intercompare rain-rate

percentiles from the SSM/I and matched-swath-width

SSMIS datasets, then analyze probability densities from

the highest power bins for the SSM/I, SSMIS, and

matched-swath-width SSMIS datasets. As shown in Part I,

the largest changes in cluster power behavior occur in the

high power bins beyond the cutoff. So, in Figs. 3 and 4, we

show probability densities for the highest cluster power

intervals beyond the cutoff using a time series analysis of

SSM/I–SSMIS datasets and NCEP Reanalysis 2 output

for which sufficient counts are available, describing any

changes to the frequency of the most powerful storm

clusters in recent climate.

Cluster power PDFs (Fig. 1a) from the SSMIS plat-

form (F16) at multiple rain-rate thresholds display little

sensitivity while also having similar scale-free power-law

ranges and cutoffs as the TRMM 3B42 cluster power

distributions in Part I. In Fig. 1b, the observed cluster

power distributions for SSM/I (F13), SSMIS, and

matched-swath-width SSMIS datasets at the 0.7mmh21

rain-rate threshold all have the same scale-free power-

law range and cutoff, closely paralleling the TRMM

3B42 cluster power distribution with a sharp drop in the

frequency of storm clusters in the highest power bins

beyond 105GW. Beyond the cutoff, the tail of the

TRMM 3B42 distribution shifts toward higher power

and includes two extra high power bins compared to the

SSM/I–SSMIS distributions. The TRMM 3B42 dataset

contains merged rain rates from multiple platforms, so

unlike SSM/I–SSMIS platforms, there are no gaps in

spatial coverage that limit cluster area. This implies that

FIG. 1. (a) Probability distributions of cluster power (i.e., pre-

cipitation integrated over clusters of contiguous pixels exceeding

the specified rain-rate threshold) from the SSMIS (F16) precipitation

product over the tropics for 1 May–30 Sep 2004–09. As in Part I,

cluster power can be equivalently expressed in terms of a mass

budget as the integrated mass of water lost per hour (kg h21), with

1GW equal to 1.4 3 106 kgh21. (b) Comparison of cluster power

probability distributions for the 0.7mmh21 rain -rate threshold from

TRMM 3B42, SSM/I (F13), matched-swath-width SSMIS (F16), and

NCEP Reanalysis 2 precipitation products, 1 May–30 Sep 2004–09.

(c) NCEP Reanalysis 2 precipitation product cluster power proba-

bility distributions for the 0.7mmh21 rain-rate threshold for 1979–

2014, subdivided into periods shown.

FIG. 2. Scatterplot of rain-rate percentiles meeting the 0.7mmh21

rain-rate threshold from SSM/I (F13) and matched-swath-width

SSMIS (F16) precipitation products, 1 May–30 Sep 2004–09. The

correlation coefficient between precipitation products, least squares

best-fit line, and one-to-one line are also plotted for reference (from

0 to 10mmh21).
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FIG. 3. Time series plots of probability densities from the four highest cluster power in-

tervals (power intervals noted next to legends) for which statistics can be computed for each

SSM/I, SSMIS, and matched-swath-width SSMIS precipitation product for the 0.7mmh21

rain-rate threshold, 1 May–30 Sep 1987–2015. Also plotted are least squares best-fit trend

lines for the SSM/I and SSMIS platforms.
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(a)

(b)

(c)

(d)

FIG. 4. As in Fig. 3, but for the NCEP Reanalysis 2 precipitation product.

8050 JOURNAL OF CL IMATE VOLUME 30

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/12/21 06:04 PM UTC



TRMM 3B42 output includes larger clusters, which re-

sults in the TRMM 3B42 distribution containing two

extra high power bins, and probability density drops

slightly less steeply above the cutoff.

SSM/I–SSMIS and TRMM 3B42 data records only

extend back to 1987 and 1998, respectively. For a more

complete picture of cluster power behavior in recent

climate, we analyze cluster power behavior in the NCEP

Reanalysis 2 precipitation dataset, the data record of

which begins in 1979. NCEP Reanalysis 2 cluster power

distributions for 1979–2014 at the 0.7mmh21 rain-rate

threshold (for entire timeframe and 7–8-yr subsets) are

plotted in Fig. 1c. For reference, the NCEPReanalysis 2

cluster power distribution from 2004–09 is replotted in

Fig. 1b to compare with observed data. Because the

NCEP Reanalysis 2 output has a comparatively coarse

resolution, its scale-free, power-law range begins at

higher power and contains fewer bins than the observed

scale-free, power-law range. Even so, NCEP Reanalysis

2 cluster power distributions qualitatively agree with

observed data, with a slight shift in the cutoff toward

higher power. Furthermore, we find little variation in

cluster power behavior between 1979 and 2014, the im-

plications of which will be further examined in Fig. 4.

The slightly different averaging interval compared to

TRMM 3B42 (6 vs 3 h) and other caveats on retrieval

comparisons (e.g., Adler et al. 2001) do not appear to

have strong effects on the form of the distribution, and in

examining changes below, each dataset is compared

only to itself.

SSM/I (F13) and matched-swath-width SSMIS (F16)

rain-rate retrievals for May–September 2004–09 display

a high degree of agreement, suggesting consistency

of intercalibration (Figs. 1 and 2), consistent with pre-

vious SSM/I–SSMIS calibration research noted in Yan

and Weng (2008) and Sun and Weng (2008). SSM/

I-matched-swath-width SSMIS cluster power distribu-

tions closely parallel each other (Fig. 1), rain-rate per-

centiles correlate highly (r5 0.9987; Fig. 2), and the least

squares best-fit line through the rain-rate percentiles is

nearly one-to-one (Fig. 2), suggesting the current in-

tercalibration should suffice for most purposes. In

principle, by matching SSMIS and SSM/I swath widths,

onemight expect to be able to construct a complete time

series of observed cluster power behavior since 1987.

However, as shown below, for trend detection in the

probabilities of large precipitation clusters, the degree

of accuracy required in intersatellite calibration is more

demanding than the levels shown by the tests so far.

Figure 3 shows time series of probability densities for

four cluster power intervals (6.51 3 104–1.03 3 105,

1.03–1.65 3 105, 1.65–2.62 3 105, and 2.62–4.17 3 105

GW), characterizing the high cluster power range for all

satellites carrying the SSM/I and SSMIS platforms for

1987–2015. For brevity, we will refer to these intervals as

bins 17–20. As noted in Part I, the model-projected

changes tend to occur disproportionately for the most

powerful storm clusters ranging in the high power re-

gime beyond the cutoff, with the fractional change in

probability density increasing with power in this range.

We thus examine whether a signature of increase can

be seen for intervals of power across this range,

conducting a time series analysis of the four highest

power bins individually. Integrated probability above a

given power value tends to be dominated by the interval

near that power value (because of the steep drop in

baseline probability density with increasing power), so

showing probability density change as a function of

power intervals provides a more complete view. The bin

boundaries are the same for each platform: that is, bin 17

boundaries for SSM/I platforms F08, F10, F11, F13, F14,

and F15 are the same as for SSMIS platforms F16 and

F17 bin 17 boundaries. The cluster power values for

these bins remain constant between SSM/I and SSMIS

platforms, while over time and platform the number of

counts per bin varies.

A naïve analysis might infer from Figs. 1b and 2 that

because PDFs and rain-rate percentiles are very close

between SSM/I, SSMIS, and matched-swath-width data,

one could analyze for a precipitation cluster trends

through the entire time series without consideration of

instrumentation differences. However, it turns out to be

important to break out each satellite time series sepa-

rately, using the overlap in time periods to explicitly test

whether the calibration holds at this demanding level of

accuracy. In these overlap periods (subsets of 2004–09

for the various satellites in Fig. 3), the SSM/I and SSMIS

time series exhibit mismatches that indicate that the

precision of intercalibration needed to construct a con-

tinuous SSM/I–SSMIS time series of probability in these

upper bins does not appear to be met by the current

intercalibration. It may also be noted that the swath-

width-matching procedure appears to have only a

modest impact in connecting the SSM/I–SSMIS time

series. When trends (i.e., the slopes of the least squares

best-fit lines) in the cluster probabilities in the four

highest bins 17–20 are computed over the entire time

series without consideration of instrumentation differ-

ences, each gives a statistically significant positive trend

(by the Student’s t test at the 95% level). Thus, a naïve
blending of the satellite series might appear to give a

positive trend. However, given the apparent calibration

jump between the SSM/I and SSMIS time series for bins

17–19, this serves as a cautionary statement on the ne-

cessity of carefully examining the calibration. Proba-

bility trends for cluster probabilities for power within
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the highest bins 17–19 are computed separately for each

of the SSM/I and SSMIS platforms; for the short time

series for the separate platforms, these trends fail to pass

the Student’s t test at the 95% level. For the highest

power bin (bin 20), there is less calibration jump be-

tween the SSM/I and SSMIS time series. However, one

should be duly cautious regarding the statistically sig-

nificant increase in probability in this bin, given the

calibration issues noted in the others. A more careful

intercalibration of these satellites could potentially

permit trend detection for cluster probabilities.

In Fig. 4 we also check for an upward trend (i.e.,

positive slope of the least squares best-fit line) in the

probability of high power storm clusters in recent cli-

mate by analyzing time series plots of probability den-

sities from four of the five highest power bins using

NCEP Reanalysis 2 model output. These bins corre-

spond to cluster power intervals of 1.37–2.19 3 105 (bin

10), 2.19–3.51 3 105 (bin 11), 3.51–5.58 3 105 (bin 12),

and 5.583 8.893 105GW (bin 13). The time series from

the highest power intervals (bin 14) is excluded because

of insufficient storm counts over the observed period.

The upward trend line in bin 10 (Fig. 4a), of approxi-

mately 15% increase over the 26-yr period passes the

Student’s t test at the 95% level. However, the trends in

bins 11–13 do not pass this test at the 95% level, possibly

associated with the fewer counts per bin in these higher

bins. Additionally, the cluster power interval associated

with bin 13 (5.58–8.893 105GW) lies beyond the highest

cluster power interval seen in SSM/I–SSMIS observa-

tions (2.62–4.17 3 105GW). For the signature seen in

Part I in end-of-century runs, the expectation would be

for consistency of trend among the high power bins: that

is, consistency of the upward trend displayed in bin 10

with a corresponding increase in the probability of storm

clusters in bins 11–13. While results in Figs. 3 and 4 do

not preclude trends in extreme precipitation being de-

tectable in other measures, this analysis does indicate

difficulty in detecting significant trends for changes in

probability density of high power storm clusters in re-

cent climate in these datasets.

b. Cluster power distributions and probability trends
for high power clusters in CMIP5 models

In Part I, historical and future cluster power distri-

butions from a high-resolution atmospheremodel at two

horizontal resolutions (HiRAM-C360 and HiRAM-

C180) are analyzed. When compared to observed (e.g.,

TRMM 3B42) cluster power statistics, cluster power

distributions at both resolutions compare favorably with

each other and observations, with a similar scale-free,

power-law range cutoff near 105GW and sharp decrease

in the probability of the most intense storm clusters

thereafter. The behavior of the HiRAM cluster power

distributions shows little resolution dependence, but, in

the range of the highest cluster power bins beyond the

cutoff, the minimum rain-rate threshold has to be

greater than about 0.3mmh21 to yield robust results

consistent with observations. Without attempting to

examine when a signal emerges, we also find that the

probability of storm clusters from the high cluster power

range increases, relative to recent climate, by a factor

that increases with increasing cluster power. This in-

crease can exceed a factor of 10 for the highest cluster

power interval that can be adequately resolved in cur-

rent climate. In Figs. 5–8, we investigate cluster power

behavior from a suite of seven high-resolution CMIP5

FIG. 5. Historical, midcentury, and end-of-century cluster power

PDFs from seven high-resolution CMIP5 models for the 0.7mmh21

rain-rate threshold. For readability, all cluster power probability

distributions except for CCSM4 have been shifted vertically down by

3 decades between each model. Relative probability values on the

log-y axis are unchanged by this procedure; absolute values may

be read on the y axis by increasing the exponent by 3 for each

successive model (e.g., read 1028 as 1025 for MIROC5). Historical

period: 1979–2005; midcentury RCP8.5 period: 2026–45 (CNRM-

CM5, CCSM4, HadGEM2-ES, and INM-CM4.0) and 2025–50

(MRI-CGCM3, EC-EARTH, and MIROC5); and end-of-century

RCP8.5 period: 2081–2100 (CNRM-CM5, CCSM4, HadGEM2-ES,

and INM-CM4.0) and 2075–2100 (MRI-CGCM3, EC-EARTH,

and MIROC5).

8052 JOURNAL OF CL IMATE VOLUME 30

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/12/21 06:04 PM UTC



FIG. 6. As in Fig. 4, but for MRI-CGCM3 modeled precipitation clusters for 1979–2100.

Recent historical trend (if significant) is shown in red, and year where trend becomes sig-

nificant with all remaining years significant is depicted with a vertical red line. Trend from

1979–2100 is shown in blue.
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FIG. 7. As in Fig. 6, but for EC-EARTH model.
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FIG. 8. As in Fig. 6, but for MIROC5 model.
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models under the RCP8.5 scenario for recent, mid-

century, and end-of-century climate. Figure 5 displays

cluster power distributions from the model ensemble,

from which corresponding changes to the frequency of

the highest power storm clusters by mid- and end of

century, relative to recent climate, can be inferred.

Figure 5 is based on the binning procedure described in

section 2 that ensures relative error bars for all models

do not exceed a specified value during the historical

period (see Table S2). To demonstrate robustness,

Figure S1 and Table S3 in the SI show the corresponding

results when this criterion is not enforced, exhibiting

highly consistent results. Figures 6–8 examine when a

statistically significant signal emerges for the three

CMIP5 models in our study that have a continuous time

series of data available for 1979–2100.We set 1979 as the

start date for our model analysis for consistency with the

NCEP Reanalysis 2 discussed in section 3. The cluster

power intervals examined in these models are chosen to

cover the power range above the cutoff.

Cluster power distributions in Fig. 5 indicate that our

ensemble of CMIP5 models generally have similar scale-

free, power-law ranges, cutoffs, and sharp decreases

thereafter as observations and HiRAM model output.

There is a substantial increase in the frequency of clusters

(up to an order of magnitude) with power in the highest

bins by end of century, also similar toHiRAMprojections.

Changes by midcentury are less clear. Three CMIP5

models (CNRM-CM5, INM-CM4.0, and MIROC5) ex-

hibit little to no change in cluster power behavior by

midcentury, while the other models (HadGEM2-ES,

CCSM4, EC-EARTH, and MRI-CGCM3) are more

consistent with midcentury projections displayed by the

HiRAM simulations in Part I.

A number of methods have been used to assess the

timing of detectability of statistically significant changes

under global warming. Mahlstein et al. (2011) consider

statistically significant differences betweenmoving 30-yr

windows, while Hawkins and Sutton (2012) estimate the

time of emergence using signal-to-noise ratios and linear

regression. Thompson et al. (2015) develop analytic

expressions for time of emergence based on the Stu-

dent’s t test for significance of a linear regression trend

(von Storch and Zwiers 1999). Here we use a similar

linear regression test, applied numerically, to detect

when a statistically significant trend in the probability

increases for large cluster sizes emerges. This is done for

the three models in this suite of CMIP5 models with a

complete time series through the end of the century of

the 3-hourly precipitation from which these clusters are

computed. A least squares regression is carried out from

1979 to each year between 1984 and the end of the

century. These are then evaluated for the first end year

for which (i) the regression fit passes the Student’s t test

at the 95% level, and (ii) regression lines (from 1979)

extending to all subsequent end years pass the Student’s

t test at the same significance level. This year is used as a

measure of when the trend emerges relative to in-

terannual variability. This is done for a series of cluster

power intervals corresponding to the uppermost bins in

Table S3 that exceed an average of four counts per year

in the historical period. These provide a convenient

means of describing the evolution in the cluster power

range above the cutoff where the most substantial

changes are noted in Fig. 5. We describe the trends in

detail for each cluster power interval in each model but

draw conclusions based on the overall behavior.

The three models with continuous data through the

end of the century (Figs. 6–8) show considerable spread

as to when changes to the probability of themost intense

storms become detectable. For theMRI-CGCM3model

(Fig. 6), we examine trends for cluster power intervals

1.28–2.04 3 105, 2.04–3.26 3 105, 3.26–5.20 3 105, and

5.20–8.28 3 105GW. Similar to section 3a, we refer to

these power intervals as bins 12–15, which correspond to

those given in Table S3. A statistically significant up-

ward trend (by the criteria above, which include statis-

tical significance in all subsequent years) emerges by

2020 for bin 12 and 2033 for bin 13. The power interval

for bin 12, 1.28–2.04 3 105GW, is approximately

equivalent to the interval 1.37–2.19 3 105GW (bin 10)

of the NCEP Reanalysis 2 dataset that shows a similar

upward trend that is statistically significant by 2014.

Storm clusters having power falling within bins 12–14

become from 2 (bin 12) to 4 times (bin 14)more frequent

by end of century, relative to their historical mean values

(1979–2014), and the frequency of storms from the

highest power bin (bin 15) increases by a factor of 7.

For the EC-EARTH model (Fig. 7), probability

densities for cluster power intervals 8.12 3 104–1.29 3
105 (bin 11), 1.29–2.06 3 105 (bin 12), 2.06–3.28 3 105

(bin 13), and 3.28–5.22 3 105GW (bin 14) are shown.

Statistically significant upward trends emerge by 2004

(bin 11), 2013 (bin 12), and 2018 (bin 13). The cluster

power interval for bin 12 in the EC-EARTH model is

approximately equivalent to cluster power intervals in

bin 12 (MRI-CGCM3) and bin 10 (NCEPReanalysis 2),

and, notably, statistically significant frequency increases

of storms within this power interval are shown in all

three datasets. In the highest power bin shown (bin 14),

an upward trend is not significant until 2030. Modeled

EC-EARTH storms with their power falling within bins

11–13 become 1.4–4 times more frequent by end of cen-

tury, respectively, relative to their historical mean values.

The power intervals associated with bins 12 and 13 from

EC-EARTH approximate power intervals associated
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with bins 12 and 13 from MRI-CGCM3, and the magni-

tude of increase for both models within these power in-

tervals is the same (roughly a factor of 2–4). Storm

clusters from the highest power interval (bin 14) become

13 times more frequent in the EC-EARTH model,

roughly the same power interval as MRI-CGCM3 bin 14,

but almost twice as frequent. The end-of-century fre-

quency increases for all MRI-CGCM3 and EC-EARTH

bins shown in Figs. 6 and 7 fall above one standard de-

viation around their historical mean values, implying that

the end-of-century increase in the frequency of high

power storm clusters is unprecedented compared to re-

cent climate.

The frequency of the most powerful storm clusters

from the MIROC5 model (Fig. 8) show much greater

interannual variability, compared to the EC-EARTH

and MRI-CGCM3 output. The upward trends for

MIROC5 for all of the power intervals shown do not

become statistically significant until after 2060, possibly

in part due to the large degree of interannual variability.

The relative magnitude of the increased probability of

powerful storms in the MIROC5 model only ranges

from a factor of 1.16–1.51, respectively, less than the

increases projected in the MRI-CGCM3 and EC-

EARTH models in bins of comparable power. Addi-

tionally, only the trends from MIROC5 bins 11 and 12

(power interval equivalent to bins 12 and 13 in both

MRI-CGCM3 and EC-EARTH models), not bins 13

and 14, fall above one standard deviation, relative to

their historical mean.

4. Summary and discussion

Here we examine distributions of storm cluster power

over the tropics using satellite rain-rate retrievals (SSM/

I–SSMIS and TRMM 3B42) and NCEP Reanalysis 2

precipitation data, with SSM/I–SSMIS and TRMM

3B42 distributions, in general, closely paralleling each

other. Specifically, SSM/I–SSMIS cluster power distri-

butions show little variation by rain-rate threshold and

have the same scale-free power-law region and cutoff at

high cluster power as TRMM 3B42, indicating that

swath width does not affect the cutoff. NCEPReanalysis

2 cluster power distributions begin at higher power as a

result of coarser resolution and cut off at slightly higher

power than observations but, even so, approximate the

same form as the observed cluster power distributions.

Since the SSM/I–SSMIS data record extends back to

1987, we also analyze SSM/I–SSMIS rain-rate data for

changes to storm cluster power behavior in recent cli-

mate. SSMIS swaths are approximately 300-km wider

than SSM/I swaths, so, to test cluster power statistics for

sensitivity to swath width, we run a procedure where we

narrow SSMIS swaths tomatch SSM/I swathwidth at the

0.7mmh21 rain rate. The swath width calibration has

only a modest impact, as SSM/I and matched-swath-

width SSMIS rain rate percentiles are highly calibrated

(e.g., the correlation coefficient between retrievals

equals 0.9987) and have a least squares best-fit line that

is nearly one to one. Despite the high degree of cali-

bration, the probabilities of the most intense storm

clusters from the four highest power bins broken out

into time series by satellite display a discontinuity be-

tween SSM/I, SSMIS, and matched-swath-width SSMIS

retrievals, such that, for the level of difference we are

trying to detect here, the current SSM/I–SSMIS cali-

bration is insufficient. Some of the highest power bins in

both the SSM/I–SSMIS andNCEPReanalysis 2 datasets

do show an increase in the probability of the most

powerful storm clusters in recent climate, but, given the

instrumentation, these trends may not be reliable.

Improvements to SSM/I–SSMIS rain-rate retrieval in-

tercalibrations and overlapping satellite instrumen-

tation would be useful for detecting trends in cluster

power behavior within the next couple of decades. Any

gap in satellite coverage, especially with consistent in-

strumentation, potentially hinders such efforts. Given

the termination of the DMSP program, canceled launch

of the F20 satellite, degradation of data from the F17

satellite, and failure of the F19 satellite, data record

continuity may be an important consideration.

Cluster power distributions from our ensemble of

CMIP5 models begin at higher power than our observed

datasets and thus have shorter scale-free regions. Even

so, all of the CMIP5 models reasonably reproduce the

scale-free region with approximately the same exponent

and cutoff as in observations here and in Part I. By end

of century, we see a consistent trend toward more fre-

quent high power storm clusters across all models. These

increases occur above the cutoff and are consistent with

an extension of the cutoff toward higher power, as oc-

curs for probability distributions of precipitation accu-

mulations (Neelin et al. 2017), which results in increases

in probability density relative to the historical period

that rise roughly exponentially across this range. For

somemodels (MRI-CGCM3, EC-EARTH,HadGEM2-

ES, and INM-CM4.0), the probability of storm clusters

in the highest power bin for which statistics can be re-

liably computed in the historical period increase by up to

an order of magnitude, relative to historical climate,

matching HiRAM trends noted in Part I. For the other

models (CCSM4, CNRM-CM5, and MIROC5), end-of-

century changes are likewise substantial, with the

probability of the most powerful storm clusters in-

creasing by a factor of 3–7. These numbers typify the

changes in the highest cluster power interval with
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sufficient statistics in a 27-yr sample from historical cli-

mate: end-of-century simulations also exhibit events of

magnitude unprecedented in the historical period, con-

sistent with the extension of the cutoff.

Pendergrass et al. (2016) use an idealized suite of

global radiative–convective equilibrium simulations

to examine convective organization as a function of

specified SST. They find a sharp shift to larger, more

organized clusters under warmer conditions (global

SST .303K), with circulation changes as the primary

driver. Although the idealized, fixed-SST configura-

tion differs considerably from the realistic simulations

considered here, one can ask whether the cluster power

increases found here emerge gradually or exhibit thresh-

old behavior, as well as when trends emerge from natural

variability.

Given that the CMIP5 models analyzed agree on

qualitative behavior of end-of-century changes, we

conduct a time series analysis on the three models in our

suite for which continuous data are available from the

historical period through the end of the century, to in-

vestigate when statistically significant increases in the

probability of the most intense storms appear. Trends in

probability are examined for intervals of cluster power

above the cutoff. In all three models, over these cluster

power intervals, trends tend to emerge gradually with-

out strong evidence of a rapid change that might be as-

sociated with a threshold, although in the uppermost

interval examined it would be difficult to exclude non-

linearity because of lower sampling in the historical

period. While relative increases are larger for higher

cluster power, statistical significance of probability

trends tends to emerge earlier for intervals that are not

too far above the cutoff, because of the smaller sample

size typically available at higher power. One of these

three models (EC-EARTH) exhibits trends that are

statistically significant prior to 2020 in three of four

power intervals examined (with cluster power ranging

from 0.5–5 3 105GW); one model (MRI-CGCM3)

shows similar emergence by about 2030, even for these

metrics that break down the probability trends as a

function of storm size. On the other hand, the third

model (MIROC5) does not display a detectable signal in

these metrics until after 2050, likely due to much larger

interannual variability. Having more high-resolution

CMIP models with continuous data records extending

through the end of the century would help narrow the

uncertainty surrounding the timing of detectability in

these measures.
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